來源:初中數學競賽 2005-09-09 16:24:35
如果一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,那么
反過來,如果x1,x2滿足x1+x2=p,x1x2=q,則x1,x2是一元二次方程x2-px+q=0的兩個根.一元二次方程的韋達定理,揭示了根與系數的一種必然聯系.利用這個關系,我們可以解決諸如已知一根求另一根、求根的代數式的值、構造方程、證明等式和不等式等問題,它是中學數學中的一個有用的工具.
1.已知一個根,求另一個根
利用韋達定理,我們可以通過方程的一個根,求出另一個根.
例1 方程(1998x)2-1997?1999x-1=0的大根為a,方程x2+1998x-1999=0的小根為b,求a-b的值.
解 先求出a,b.
由觀察知,1是方程(1998x)2-1997?1999x-1=0的根,于是由韋達
又從觀察知,1也是方程x2+1998x-1999=0的根,此方程的另一根為-1999,從而b=-1999.
所以a-b=1-(-1999)=2000.
例2 設a是給定的非零實數,解方程
解 由觀察易知,x1=a是方程的根.又原方程等價于
2.求根的代數式的值
在求根的代數式的值的問題中,要靈活運用乘法公式和代數式的恒等變形技巧.
例3 已知二次方程x2-3x+1=0的兩根為α,β,求:
(3)α3+β3;(4)α3-β3.
解 由韋達定理知
α+β=3,αβ=1.
(3)α3+β3=(α+β)(α2-αβ+β2)
=(α+β)[(α+β)2-3αβ]
=3(9-3)=18;
(4)α3-β3=(α-β)(α2+αβ+β2)
=(α-β)[(α+β)2-αβ]
例4 設方程4x2-2x-3=0的兩個根是α和β,求4α2+2β的值.
解 因為α是方程4x2-2x-3=0的根,所以
4α2-2α-3=0,
即
4α2=2α+3.
4α2+2β=2α+3+2β=2(α+β)+3=4.
例5 已知α,β分別是方程x2+x-1=0的兩個根,求2α5+5β3的值.
解 由于α,β分別是方程x2+x-1=0的根,所以
α2+α-1=0,β2+β-1=0,
即 α2=1-α,β2=1-β.
α5=(α2)2?α=(1-α)2α=(α2-2α+1)α
=(1-α-2α+1)α=-3α2+2α
=-3(1-α)+2α=5α-3,
β3=β2?β=(1-β)β=β-β2
=β-(1-β)=2β-1.
所以
2α5+5β3=2(5α-3)+5(2β-1)
=10(α+β)-11=-21.
說明 此解法的關鍵在于利用α,β是方程的根,從而可以把它們的冪指數降次,最后都降到一次,這種方法很重要.
例6 設一元二次方程ax2+bx+c=0的兩個實根的和為s1,平方和為s2,立方和為s3,求as3+bs2+cs1的值.
解 設x1,x2是方程的兩個實根,于是
所以 as3+bs2+cs1=0.
說明 本題最“自然”的解法是分別用a,b,c來表示s1,s2,s3,然后再求as3+bs2+cs1的值.當然這樣做運算量很大,且容易出錯.下面我們再介紹一種更為“本質”的解法.
另解 因為x1,x2是方程的兩個實根,所以
同理
將上面兩式相加便得
as3+bs2+cs1=0.
3.與兩根之比有關的問題
例7 如果方程ax2+bx+c=0(a≠0)的根之比等于常數k,則系數a,b,c必滿足:
kb2=(k+1)2ac.
證 設方程的兩根為x1,x2,且x1=kx2,由韋達定理
由此兩式消去x2得
即
kb2=(k+1)2ac.
例8 已知x1,x2是一元二次方程
4x2-(3m-5)x-6m2=0
解 首先,△=(3m-5)2+96m2>0,方程有兩個實數根.由韋達定理知
從上面兩式中消去k,便得
即 m2-6m+5=0,
所以 m1=1,m2=5.
4.求作新的二次方程
例9 已知方程2x2-9x+8=0,求作一個二次方程,使它的一個根為原方程兩根和的倒數,另一根為原方程兩根差的平方.
解 設x1,x2為方程2x2-9x+8=0的兩根,則
設所求方程為x2+px+q=0,它的兩根為x'1,x'2,據題意有
故
所以,求作的方程是
36x2-161x+34=0.
例10 設x2-px+q=0的兩實數根為α,β.
(1)求以α3,β3為兩根的一元二次方程;
(2)若以α3,β3為根的一元二次方程仍是x2-px+q=0,求所有這樣的一元二次方程.
解 (1)由韋達定理知
α+β=p,αβ=q,
所以
α3+β3=(α+β)[(α+β)2-3αβ]=p(p2-3q),
α3?β3=(αβ)3=q3.
所以,以α3,β3為兩根的一元二次方程為
x2-p(p2-3q)x+q3=0.
(2)由(1)及題設知
由②得q=0,±1.若q=0,代入①,得p=0,±1;若q=-1,代入①,
以,符合要求的方程為
x2=0,x2-x=0,x2+x=0,x2-1=0.
5.證明等式和不等式
利用韋達定理可以證明一些等式和不等式,這常常還要用判別式來配合.
例11 已知實數x,y,z滿足
x=6-y,z2=xy-9,
求證:x=y.
證 因為x+y=6,xy=z2+9,所以x,y是二次方程
t2-6t+(z2+9)=0
的兩個實根,于是這方程的判別式
△=36-4(z2+9)=-4z2≥0,
即z2≤0.因z為實數,顯然應有z2≥0.要此兩式同時成立,只有z=0,從而△=0,故上述關于t的二次方程有等根,即x=y.
例12 若a,b,c都是實數,且
a+b+c=0,abc=1,
證 由a+b+c=0及abc=1可知,a,b,c中有一個正數、兩個負數,不妨設a是正數,由題意得
于是根據韋達定理知,b,c是方程
的兩個根.又b,c是實數,因此上述方程的判別式
因為a>0,所以
a3-4≥0,a3≥4,
例13 知x1,x2是方程4ax2-4ax+a+4=0的兩個實根.
解 (1)顯然a≠0,由△=16a2-16a(a+4)≥0,得a<0.由韋達定理知
所以
所以a=9,這與a<0矛盾.故不存在a,使
(2)利用韋達定理
所以(a+4)|16,即a+4=±1,±2,±4,±8,±16.結合a<0,得a=-2,-3,-5,-6,-8,-12,-20.
練習八
1.選擇:
(1)若x0是一元二次方程ax2+bx+c=0(a≠0)的根,則判別式△=b2-4ac與平方式M=(2ax0+b)2的關系是 [ ]
(A)△>M (B)△=M
(C)△=<M (D)不確定
(2)方程x2+px+1997=0恰有兩個正整數根x1,x2,則
[ ]
(A)-4 (B)8
(C)6 (D)0
為 [ ]
(A)3 (B)-11
(C)3或-11 (D)11
2.填空:
(1)如果方程x2+px+q=0的一根為另一根的2倍,那么,p,q滿足的關系式是______.
(2)已知關于x的一元二次方程ax2+bx+c=0沒有實數根,甲由于看錯了二次項系數,誤求得兩根為2和4,乙由于看錯了某一項系數的符號,
1993+5a2+9a4=_______.
(4)已知a是方程x2-5x+1=0的一個根,那么a4+a-4的末位數是______.
另一根為直角邊a,則此直角三角形的第三邊b=______.
3.已知α,β是方程x2-x-1=0的兩個實數根,求α4+3β的值.
4.作一個二次方程,使它的兩個根α,β是正數,并且滿足關系式
歡迎使用手機、平板等移動設備訪問中考網,2025中考一路陪伴同行!>>點擊查看
B闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐閸愯弓缃曟繝寰锋澘鈧洟骞婃惔銏╂敯闂傚倷鑳剁划顖炲礉閺囥垹绠规い鎰╁€栭崰鍡涙煥閺囩偛鈧綊鎮¢妷鈺傜厽闁哄洨鍋涢埀顒€婀遍埀顒佺啲閹凤拷
C闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸婂潡鏌ㄩ弴姘舵濞存粌缍婇弻娑㈠箛閸忓摜鏁栭梺娲诲幗閹瑰洭骞冨Δ鍛瀭妞ゆ劑鍊栭幉娆愮節濞堝灝鏋熷┑鐐诧躬瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f礀缁犵娀鏌熼崜褏甯涢柛瀣ㄥ€濋弻鏇熺箾閻愵剚鐝旂紓浣插亾濠㈣泛顑囩粻楣冩煕閳╁叐鎴犱焊椤撶姷纾奸柍褜鍓熷畷鎺楁倷鐎电ǹ寮抽梻浣虹帛濞叉牠宕愰崷顓涘亾濮樼偓瀚�闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i姀鈶跺湱澹曟繝姘厵闁告挆鍛闂佺粯鎸婚悷褏妲愰幒鏂哄亾閿濆骸浜滄い鏇熺矒閺岀喖鎯傞崫銉滈梺鍝勭焿缂嶄線鐛▎鎾崇妞ゆ巻鍋撴い蹇ユ嫹闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i姀鈶跺湱澹曟繝姘厵闁告挆鍛闂佺粯鎸婚悷褏妲愰幒鏂哄亾閿濆簼绨藉ù鐘灪閵囧嫰骞掔€n亞浼勯梺璇″櫘閸o綁寮幘缁樻櫢闁跨噦鎷�
D濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倻鎲搁悧鍫濈瑲闁稿顦甸弻鏇$疀鐎n亖鍋撻弴銏㈠祦闁靛骏绱曠粻楣冩煕閳╁厾顏堟倿妤e啯鐓曢柣鏇炲€圭€氾拷
F缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕閻庤娲橀崝娆忕暦椤愶箑唯闁挎洍鍋撻幖鏉戯躬濮婇缚銇愰幒鎴滃枈闂佸摜濮靛畝鎼佸箖閾忣偆绡€婵﹩鍘鹃崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷
G婵犵數濮撮惀澶愬级鎼存挸浜炬俊銈勭劍閸欏繘鏌i幋锝嗩棄缁惧墽绮换娑㈠箣濞嗗繒浠鹃梺绋匡龚閸╂牜鎹㈠┑瀣棃婵炴垶鑹鹃埅閬嶆⒑缂佹ḿ鐭婃い顓犲厴瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷
H闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇氱秴闁搞儯鍔庨々鐑芥倵閿濆簼绨婚柛瀣Ч濮婃椽宕楅懖鈹垮仦闂佸搫鎳忕换鍫ュ箖閾忣偆绡€婵﹩鍘鹃崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐閸愬弶鐤勫┑掳鍊х徊浠嬪疮椤栫偛纾婚悗锝庡枟閻撴瑩鏌eΔ鈧悧濠勬閼碱剛妫柟顖嗗瞼鍚嬮梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�
J婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒€鏂€缂傚倹纰嶇换娑㈠幢濡搫袝濠电偛鐗忛弲顐ゆ閹烘柡鍋撻敐搴″箺缁绢厼鐖奸弻锟犲幢椤撶姷鏆ら梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�
N闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐椤旂懓浜鹃柛鎰靛枛楠炪垺绻涢幋鐑嗙劯闁挎洖鍊归悡鐔兼煙闁箑澧柟顖氱墦閹嘲鈻庡▎鎴犳殼闂佸搫琚崝鎴﹀箖閵堝纾兼繛鎴烇供娴硷拷闂傚倸鍊搁崐宄懊归崶顒夋晪鐟滄棃寮绘繝鍥ㄦ櫜濠㈣泛锕﹂崝锕€顪冮妶鍡楃瑐闁煎啿鐖兼俊鎾箳濡や胶鍘遍梺鍝勫€藉▔鏇熸櫏闂備浇顕栭崰妤佺仚缂備胶濮甸惄顖涗繆閻戣姤鏅濋柍褜鍓熼、鏃堟晸閿燂拷
Q闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵稿妽闁稿顑呴埞鎴︽偐閹绘帩浠鹃梺鍝勬缁捇寮婚悢鍏煎€绘慨妤€妫欓悾鐑芥⒑缁嬪灝顒㈡い銊ワ躬瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷
S濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姳鍗抽弻鐔兼⒒鐎电ǹ濡介梺鍝勬噺缁诲牓寮婚弴鐔风窞闁糕剝蓱閻濇梻绱撴担鍝勑i柣鎿勭節瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧潡鏌熺€电ǹ孝缂佽翰鍊濋弻锕€螣娓氼垱楔闂佸搫妫撮梽鍕Φ閸曨垰绠抽柛鈩冦仦婢规洟姊绘担鐟邦嚋婵炴彃绻樺畷瑙勭鐎n亝鐎梺鐟板⒔缁垶寮查幖浣圭叆闁绘洖鍊圭€氾拷闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊閵娧呭骄闂佸壊鍋侀崕娲极鐎n剚鍠愰煫鍥ㄧ☉缁犳煡鏌曡箛瀣偓鏇犵不濞戞瑣浜滈柡鍌氱仢閳锋梹顨ラ悙瀛樺磳婵﹨娅i幑鍕Ω閵夛妇褰氶梻浣烘嚀閸ゆ牠骞忛敓锟�婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾剧粯绻涢幋娆忕仾闁搞倖鍔栭妵鍕冀椤愵澀娌梺绋款儏椤戝寮婚悢鍏煎€锋い鎺戝€婚悰顕€姊洪幐搴g畵妞わ缚鍗冲鏌ュ箹娴e湱鍙嗛梺缁樻礀閸婂湱鈧熬鎷�闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇楀亾妞ゎ亜鍟村畷绋课旈埀顒勫磼閵娿儮鏀介柛灞剧氨瑜版帗鍋い鏇楀亾闁哄本绋栭ˇ铏亜閵娿儳绠荤€殿噮鍋呯换婵嬪礋閵娿儰澹曞Δ鐘靛仜閻忔繈宕濆顓濈箚妞ゆ劧绲块幊鍥┾偓瑙勬礃濞茬喖骞冮姀銈呯闁兼祴鏅涘鎶芥⒒娴h櫣甯涙繛鍙夌墵瀹曟劙宕烽娑樹壕婵ḿ鍋撶€氾拷
T濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倻鎲搁悧鍫濈瑲闁稿﹤鐖奸弻娑㈩敃閻樻彃濮庨梺姹囧€楅崑鎾舵崲濠靛洨绡€闁稿本绋戝▍銈夋⒑閸濄儱孝婵☆偅绻堝濠氬Ω閳哄倸浜為梺绋挎湰缁嬫垿顢旈敓锟�濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倸霉閻樿尙鎲柣鎴f绾惧吋绻涢幋鐐插毈婵炶尙枪閳规垿鎮╃拠褍浼愰梺鐟板暱缁绘ê顕i崘娴嬪牚闁割偆鍠撻崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷
W婵犵數濮烽弫鍛婃叏閻㈠壊鏁婇柡宥庡幖缁愭淇婇妶鍛殲鐎规洘鐓¢弻鐔煎箥椤旂⒈鏆梺鎶芥敱濡啴寮诲☉銏犲嵆闁靛ǹ鍎虫禒顓㈡⒑缁嬪灝顒㈤柛銊ユ健瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晝閳ь剟鎮块鈧弻锝呂旈埀顒勬偋韫囨洜涓嶅Δ锝呭暞閻撳啰鎲稿⿰鍫濈闁绘梻鍘ч拑鐔兼煃閳轰礁鏆熼柣鐔烘嚀閳规垿鎮╅幓鎺撴濡炪倕楠忛幏锟�
X闂傚倸鍊搁崐宄懊归崶褏鏆﹂柣銏⑶圭粣妤呮煙閹峰苯鐒介柍褜鍓欓崯鏉戠暦閵娧€鍋撳☉娅亪鍩€椤掑啫鐓愮紒缁樼箞濡啫鈽夐崡鐐插闂備胶枪椤戝倿寮查悩璇茶摕闁靛ň鏅滈崑鍡涙煕鐏炲墽鈽夋い蹇ユ嫹
Z闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣椤愪粙鏌ㄩ悢鍝勑㈢紒鎰殕娣囧﹪濡堕崨顔兼闂佹悶鍔岄崐鍧楀蓟閿濆顫呴柕蹇婂墲濮e嫰姊虹紒妯肩煀妞ゎ厾鍏樺濠氬Ω閳哄倸浜為梺绋挎湰缁嬫垿顢旈敓锟�