來源:初中數(shù)學(xué)競賽 2005-09-09 16:24:01
1.一次函數(shù)的最大值與最小值
一次函數(shù)y=kx+b在其定義域(全體實數(shù))內(nèi)是沒有最大值和最小值的,但是,如果對自變量x的取值范圍有所限制時,一次函數(shù)就可能有最大值和最小值了.
例1 設(shè)a是大于零的常數(shù),且a≠1,求y的最大值與最小值.
大值a.
例2 已知x,y,z是非負(fù)實數(shù),且滿足條件
x+y+z=30,3x+y-z=50.
求u=5x+4y+2z的最大值和最小值.
分析 題設(shè)條件給出兩個方程,三個未知數(shù)x,y,z,當(dāng)然,x,y,z的具體數(shù)值是不能求出的.但是,我們固定其中一個,不妨固定x,那么y,z都可以用x來表示,于是u便是x的函數(shù)了.
解 從已知條件可解得
y=40-2x,z=x-10.
所以
u=5x+4y+2z
=5x+4(40-2x)+2(x-10)
=-x+140.
又y,z均為非負(fù)實數(shù),所以
解得10≤x≤20.
由于函數(shù)u=-x+140是隨著x的增加而減小的,所以當(dāng)x=10時,u有最大值130;當(dāng)x=20時,u有最小值120.
2.二次函數(shù)的最大值與最小值
例3 已知x1,x2是方程
x2-(k-2)x+(k2+3k+5)=0
解 由于二次方程有實根,所以
△=[-(k-2)]2-4(k2+3k+5)≥0,
3k2+16k+16≤0,
例4 已知函數(shù)
有最大值-3,求實數(shù)a的值.
解 因為
的范圍內(nèi)分三種情況討論.
-a2+4a-1=-3
例5 已知邊長為4的正方形截去一個角后成為五邊形ABCDE(如圖3-12),其中AF=2,BF=1.試在AB上求一點P,使矩形PNDM有最大面積.
解 設(shè)矩形PNDM的邊DN=x,NP=y,于是矩形PNDM的面積
S=xy,2≤X≤4.
易知CN=4-x,EM=4-y,且有
二次函數(shù)S=f(x)的圖像開口向下,對稱軸為x=5,故當(dāng)x≤5時,函數(shù)值是隨x的增加而增加,所以,對滿足2≤x≤4的S來說,當(dāng)x=4時有最大值
例6 設(shè)p>0,x=p時,二次函數(shù)f(x)有最大值5,二次函數(shù)g(x)的最小值為-2,且g(p)=25,f(x)+g(x)=x2+16x+13.求g(x)的解析式和p的值.
解 由題設(shè)知
f(p)=5,g(p)=25,
f(p)+g(p)=p2+16p+13,
所以 p2+16p+13=30,
p=1(p=-17舍去).
由于f(x)在x=1時有最大值5,故設(shè)
f(x)=a(x-1)2+5,a<0,
所以
g(x)=x2+16x+13-f(x)
=(1-a)x2+2(a+8)x+8-a.
由于g(x)的最小值是-2,于是
解得a=-2,從而
g(x)=3x2+12x+10.
3.分式函數(shù)的最大值與最小值
法是去分母后,化為關(guān)于x的二次方程,然后用判別式△≥0,得出y的取值范圍,進(jìn)而定出y的最大值和最小值.
解 去分母、整理得
(2y-1)x2+2(y+1)x+(y+3)=0.
△≥0,即
△=[2(y+1)]2-4(2y-1)(y+3)≥0,
解得 -4≤y≤1.
時,取最小值-4,當(dāng)x=-2時,y取最大值1.
說明 本題求最值的方法叫作判別法,這也是一種常用的方法.但在用判別法求最值時,應(yīng)特別注意這個最值能否取到,即是否有與最值相應(yīng)的x值.
解 將原函數(shù)去分母,并整理得
yx2-ax+(y-b)=0.
因x是實數(shù),故
△=(-a)2-4?y?(y-b)≥0,
由題設(shè)知,y的最大值為4,最小值為-1,所以
(y+1)(y-4)≤0,
即 y2-3y-4≤0. ②
由①,②得
所以a=±4,b=3.
4.其他函數(shù)的最大值與最小值
處理一般函數(shù)的最大值與最小值,我們常常用不等式來估計上界或下界,進(jìn)而構(gòu)造例子來說明能取到這個上界或下界.
解 先估計y的下界.
又當(dāng)x=1時,y=1,所以,y的最小值為1.
說明 在求最小(大)值,估計了下(上)界后,一定要舉例說明這個界是能取到的,才能說這就是最小(大)值,否則就不一定對了.例如,本題我們也可以這樣估計:
但無論x取什么值時,y取不到-3,即-3不能作為y的最小值.
例10 設(shè)x,y是實數(shù),求u=x2+xy+y2-x-2y的最小值.
分析 先將u看作是x的二次函數(shù)(把y看作常數(shù)),進(jìn)行配方后,再把余下的關(guān)于y的代數(shù)式寫成y的二次函數(shù),再配方后,便可估計出下界來.
又當(dāng)x=0,y=1時,u=-1,所以,u的最小值為-1.
例11 求函數(shù)
的最大值,并求此時的x值,其中[a]表示不超過a的最大整數(shù).
練習(xí)七
1.填空:
(1)函數(shù)y=x2+2x-3(0≤x≤3)的最小值是_____,最大值是_______.
(3)已知函數(shù)y=x2+2ax+1(-1≤x≤2)的最大值是4,則a=_____.
是_______.
(5)設(shè)函數(shù)y=-x2-2kx-3k2-4k-5的最大值是M,為使M最大,k=_____.
2.設(shè)f(x)=kx+1是x的函數(shù),以m(k)表示函數(shù)f(x)=kx+1在-1≤x≤3條件下的最大值,求函數(shù)m(k)的解析式和其最小值.
3.x,y,z是非負(fù)實數(shù),且滿足x+3y+2z=3,3x+3y+z=4.求u=3x-2y+4z的最大值與最小值.
4.已知x2+2y2=1,求2x+5y2的最大值和最小值.
交點間的距離的平方最小,求m的值.
6.已知二次函數(shù)y=x2+2(a+3)x+2a+4的圖像與x軸的兩個交點的橫坐標(biāo)分別為α,β,當(dāng)實數(shù)a變動時,求(α-1)2+(β-1)2的最小值.
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2025中考一路陪伴同行!>>點擊查看
B闂傚倸鍊搁崐椋庣矆娓氣偓楠炲鏁撻悩鍐蹭罕濠德板€曢幊搴㈩攰闂備胶绮崝鏇㈠箹椤愩倖鍠嗛柨鏇炲€归悡銉╂煟閺囩偛鈧湱鈧熬鎷�
C闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇氶檷娴滃綊鏌涢幇鍏哥敖闁活厽鎹囬幃妤呭垂椤愩倖鎲欐繝娈垮枟婵炲﹪寮婚妸鈺傚亞闁稿本绋戦锟�闂傚倸鍊搁崐鐑芥嚄閸洖绠犻柟鍓х帛閸嬨倝鏌曟繛鐐珔缂佲偓婢跺绠鹃柛鈩兩戠亸顓犵磼閳ь剟宕掗悙瀵稿弳闂佺粯娲栭崐鍦偓姘炬嫹闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣銏⑶圭壕濠氭煙閸撗呭笡闁绘挻鐟х槐鎺斺偓锝庡亜椤曟粓鏌熼惂鍝ョМ闁哄矉缍侀獮娆撳礋椤掆偓椤忥拷闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣銏⑶圭壕濠氭煙閸撗呭笡闁绘挻鐟х槐鎺斺偓锝庝簽娴犮垺銇勯幒瀣伄闁诡噮鍣i弫鎾绘晸閿燂拷
D婵犵數濮烽弫鍛婃叏娴兼潙鍨傜憸鐗堝笚閸嬪鏌曡箛瀣偓鏇㈢嵁閵忥紕绠鹃柛鈩兠悞楣冩煕閻曞倹瀚�
F缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾鐎规洘鍔欏畷顐﹀Ψ閿曗偓鎼村﹪姊鸿ぐ鎺戜喊闁哥姵宀搁幃铏節濮橆厾鍙嗛梺缁樻礀閸婂湱鈧熬鎷�
G濠电姴鐥夐弶搴撳亾濡や焦鍙忛柣鎴f绾剧粯绻涢幋娆忕仾闁稿﹨鍩栫换婵嬫濞戞艾鈪遍梺缁樼矊椤兘寮婚妸鈺傚亞闁稿本绋戦锟�
H闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曚綅閸ャ劎顩烽悗锝庝簻閸嬪秹姊洪崗鑲┿偞闁哄懏绻堥幃铏節濮橆厾鍙嗛梺缁樻礀閸婂湱鈧熬鎷�闂傚倸鍊搁崐椋庣矆娓氣偓楠炲鏁撻悩鍐叉疄婵°倧绲介崯顖炲磻鐎n喗鐓欓柣妤€鐗婄欢鑼棯閹岀吋闁哄被鍔戦幃銈夊磼濞戞﹩浼�
J濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰斀缂傛碍绻涢崱妯哄Е婵炲牏鏅槐鎺斺偓锝庡幗绾爼鏌¢崱顓犵暤闁哄被鍔戦幃銈夊磼濞戞﹩浼�
N闂傚倸鍊搁崐椋庣矆娓氣偓楠炲鏁撻悩顔瑰亾閸愵喖骞㈡繛鎴烆焸閿曞倹鐓熼柟閭﹀墯閹牓鎮峰▎娆戠暤闁哄被鍔戦幃銈夊磼濞戞﹩浼�闂傚倸鍊峰ù鍥敋瑜旈弻濠囨晲婢跺﹦鍔﹀銈嗗笂閼冲爼濡撮幒妤佺厱闁哄倽娉曟晥闂佽鍠楁灙缂佺姵鐩俊鐑芥晝閳ь剟顢旈敓锟�
Q闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸劍閸嬪鈹戦悩鎻掝仾闁哄棙绮撻弻鐔兼倻濮楀棙鐣烽梺绋垮椤ㄥ﹪寮婚妸鈺傚亞闁稿本绋戦锟�
S婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犱即鏌熼梻瀵稿妽闁哄懏绻堥弻鏇熷緞閸℃ɑ鐝旂紓浣哄У閻擄繝寮婚妸鈺傚亞闁稿本绋戦锟�濠电姷鏁告慨鐑藉极閹间礁纾块柟瀵稿Т缁躲倝鏌﹀Ο渚Ш闁哄棴闄勯妵鍕箳閸℃ぞ澹曢梻浣瑰濞插繘宕规禒瀣瀬闁瑰墽绮弲鎼佹煥閻曞倹瀚�闂傚倸鍊搁崐宄懊归崶銊х彾闁割偁鍎洪弫瀣喐韫囨稑绠查柕蹇嬪€曠粻娑欍亜閺傚灝鈷旀鐐存崌濮婅櫣鎹勯妸銉︾彚闂佺懓鍤栭幏锟�濠电姷鏁告慨鐑藉极閹间礁纾绘繛鎴欏灪閸ゆ劖銇勯弽顐沪闁稿顑夐弻鐔兼倷椤掑倻鐛梺鎸庣箓椤︿即寮查幖浣圭叆闁绘洖鍊圭€氾拷闂傚倸鍊搁崐鐑芥倿閿曗偓椤啴宕稿Δ鈧崒銊モ攽閸屾簱褰掓偪椤曗偓閺屾稖顦虫い銊ョ箻瀵偅绻濋崟銊ヤ壕妤犵偛鐏濋崝姘繆椤愶絿鎳囩€规洘娲熼幃銏ゅ礂閼测晛寮抽梻浣虹帛濞叉牠宕愰崷顓涘亾濮樼偓瀚�
T婵犵數濮烽弫鍛婃叏娴兼潙鍨傜憸鐗堝笚閸婂爼鏌涢鐘插姎闁汇倗鍋撶换婵囩節閸屾稑娅ら梺鍝ュТ濡繈寮婚妸鈺傚亞闁稿本绋戦锟�婵犵數濮烽弫鍛婃叏娴兼潙鍨傚ù鐘茬憭閻戣棄纾兼繛鎴炲嚬濞茬ǹ鈹戦悩璇у伐闁瑰啿绻樺鍐测堪閸喓鍙嗛梺缁樻礀閸婂湱鈧熬鎷�
W濠电姷鏁告慨鐢割敊閺嶎厼绐楁俊銈呭暞瀹曟煡鏌熼幍顔碱暭闁抽攱妫冮弻娑㈠即閵娿儳浠梺绋垮閸ㄥ潡寮婚妸鈺傚亞闁稿本绋戦锟�闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曢敃鈧悿顕€鏌eΔ鈧悧蹇曠不妤e啯鐓冪憸婊堝礈閻旂厧钃熼柍鈺佸暟閻熺懓鈹戦悩鎻掓殭妞ゅ骏鎷�
X闂傚倸鍊峰ù鍥х暦閻㈢ǹ绐楅柟鎷屽焽閳ь剙鍟村畷銊р偓娑櫭埀顒冨煐缁绘繈妫冨☉鍗炲壉闂佺ǹ顑傞弲鐘诲蓟閵娾晜鍋嗛柛灞剧☉椤忥拷
Z闂傚倸鍊搁崐鎼佸磹妞嬪孩顐介柨鐔哄Т缁愭淇婇妶鍛櫣闁搞劌鍊块弻锝夊閵忊剝姣勯梺缁樼矊椤兘寮婚妸鈺傚亞闁稿本绋戦锟�