<output id="nljzv"></output>
<i id="nljzv"></i>
<ruby id="nljzv"><meter id="nljzv"><acronym id="nljzv"></acronym></meter></ruby>
<wbr id="nljzv"><table id="nljzv"><p id="nljzv"></p></table></wbr>
  • <sub id="nljzv"><tr id="nljzv"></tr></sub>

    <sub id="nljzv"><pre id="nljzv"></pre></sub>

      <wbr id="nljzv"><table id="nljzv"></table></wbr>

    <source id="nljzv"></source>
  • <acronym id="nljzv"><bdo id="nljzv"></bdo></acronym>
    <i id="nljzv"><bdo id="nljzv"></bdo></i>

  • 中考網
    全國站
    快捷導航 中考政策指南 2024熱門中考資訊 中考成績查詢 歷年中考分數線 中考志愿填報 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁
    您現在的位置:中考 > 中考備考 > 中考復習 > 中考數學 > 正文

    2019中考數學專題復習專題:函數

    來源:網絡資源 作者:中考網整理 2019-05-01 18:53:27

    中考真題

    智能內容

    小編為初三學生分專題復習,整理了2019中考數學專題復習專題: 內容,以供大家參考閱讀。

    2019中考數學專題復習專題:函數

    一、定義與定義式:

    自變量x和因變量y有如下關系:

    y=kx+b

    則此時稱y是x的一次函數。

    特別地,當b=0時,y是x的正比例函數。

    即:y=kx (k為常數,k=?0)

    二、一次 :

    1.y的變化值與對應的x的變化值成正比例,比值為k

    即:y=kx+b (k為任意不為零的 b取任何實數)

    2.當x=0時,b為函數在y軸上的截距。

    三、一次函數的圖像及性質:

    1.作法與圖形:通過如下3個步驟

    (1)列表;

    (2)描點;

    (3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)

    2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。

    3.k,b與函數圖像所在象限:

    當k>0時,直線必通過一、三象限,y隨x的增大而增大;

    當k<0時,直線必通過二、四象限,y隨x的增大而減小。

    當b>0時,直線必通過一、二象限;

    當b=0時,直線通過原點

    當b<0時,直線必通過三、四象限。

    特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。

    這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

    四、確定一次函數的表達式:

    已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

    (1)設一次函數的表達式(也叫解析式)為y=kx+b。

    (2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b …… ① 和y2=kx2+b …… ②

    (3)解這個二元一次方程,得到k,b的值。

    (4)最后得到一次函數的表達式。

    五、 在生活中的應用:

    1.當時間t一定,距離s是速度v的一次函數。s=vt。

    2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。

    六、常用公式:(不全,希望有人補充)

    1.求函數圖像的k值:(y1-y2)/(x1-x2)

    2.求與x軸平行線段的中點:|x1-x2|/2

    3.求與y軸平行線段的中點:|y1-y2|/2

    4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2 (注:根號下(x1-x2)與(y1-y2)的平方和)

    I.定義與定義表達式

    一般地,自變量x和因變量y之間存在如下關系:

    y=ax^2+bx+c

    (a,b,c為常數,a=?0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數。

    二次函數表達式的右邊通常為二次三項式。

    II.二次函數的三種表達式

    一般式:y=ax^2+bx+c(a,b,c為常數,a=?0)

    頂點式:y=a(x-h)^2+k [拋物線的頂點P(h,k)]

    交點式:y=a(x-x?)(x-x ?) [僅限于與x軸有交點A(x? ,0)和 B(x?,0)的拋物線]

    注:在3種形式的互相轉化中,有如下關系:

    h=-b/2ak=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a

    III.二次函數的圖像

    在 中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。

    IV.拋物線的性質

    1.拋物線是 圖形。對稱軸為直線x= -b/2a。

    對稱軸與拋物線唯一的交點為拋物線的頂點P。

    特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

    2.拋物線有一個頂點P,坐標為

    P( -b/2a ,(4ac-b^2)/4a )

    當-b/2a=0時,P在y軸上;當Δ= b^2-4ac=0時,P在x軸上。

    3.二次項系數a決定拋物線的開口方向和大小。

    當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

    |a|越大,則拋物線的開口越小。

    4.一次項系數b和二次項系數a共同決定對稱軸的位置。

    當a與b同號時(即ab>0),對稱軸在y軸左;

    當a與b異號時(即ab<0),對稱軸在y軸右。

    5.常數項c決定拋物線與y軸交點。

    拋物線與y軸交于(0,c)

    6.拋物線與x軸交點個數

    Δ= b^2-4ac>0時,拋物線與x軸有2個交點。

    Δ= b^2-4ac=0時,拋物線與x軸有1個交點。

    Δ= b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x= -b±√b^2-4ac 的值的相反數,乘上虛數i,整個式子除以2a)

    V. 與

    特別地,二次函數(以下稱函數)y=ax^2+bx+c,

    當y=0時,二次函數為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0

    此時,函數圖像與x軸有無交點即方程有無 根。

    函數與x軸交點的橫坐標即為方程的根。

    1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a=?0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

    解析式 頂點坐標對 稱 軸

    y=ax^2(0,0) x=0

    y=a(x-h)^2(h,0) x=h

    y=a(x-h)^2+k(h,k) x=h

    y=ax^2+bx+c(-b/2a,[4ac-b^2]/4a) x=-b/2a

    當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

    當h<0時,則向左平行移動|h|個單位得到.

    當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

    當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

    當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

    當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

    因此,研究拋物線 y=ax^2+bx+c(a=?0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

    2.拋物線y=ax^2+bx+c(a=?0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

    3.拋物線y=ax^2+bx+c(a=?0),若a>0,當x ≤ -b/2a時,y隨x的增大而減小;當x ≥ -b/2a時,y隨x的增大而增大.若a<0,當x ≤ -b/2a時,y隨x的增大而增大;當x ≥ -b/2a時,y隨x的增大而減小.

    4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

    (1)圖象與y軸一定相交,交點坐標為(0,c);

    (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=

    (a=?0)的兩根.這兩點間的距離AB=|x?-x?|

    當△=0.圖象與x軸只有一個交點;

    當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.

    5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x= -b/2a時,y最小(大)值=(4ac-b^2)/4a.

    頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

    6.用待定系數法求 的解析式

    (1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

    y=ax^2+bx+c(a=?0).

    (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a=?0).

    (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a=?0).

    7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.

    形如 y=k/x(k為常數且k=?0) 的函數,叫做反比例函數。

    自變量x的取值范圍是不等于0的一切 。

    反比例函數圖像性質:

    為雙曲線。

    由于反比例函數屬于奇函數,有f(-x)=-f(x),圖像關于原點對稱。

    另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

    如圖,上面給出了k分別為正和負(2和-2)時的函數圖像。

    當K>0時,反比例函數圖像經過一,三象限,是減函數

    當K<0時,反比例函數圖像經過二,四象限,是增函數

    反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。

       歡迎使用手機、平板等移動設備訪問中考網,2023中考一路陪伴同行!>>點擊查看

    • 歡迎掃描二維碼
      關注中考網微信
      ID:zhongkao_com

    • 歡迎掃描二維碼
      關注高考網微信
      ID:www_gaokao_com

    • 歡迎微信掃碼
      關注初三學習社
      中考網官方服務號

    熱點專題

    • 2024年全國各省市中考作文題目匯總
    • 2024中考真題答案專題
    • 2024中考查分時間專題

    [2024中考]2024中考分數線專題

    [2024中考]2024中考逐夢前行 未來可期!

    中考報考

    中考報名時間

    中考查分時間

    中考志愿填報

    各省分數線

    中考體育考試

    中考中招考試

    中考備考

    中考答題技巧

    中考考前心理

    中考考前飲食

    中考家長必讀

    中考提分策略

    重點高中

    北京重點中學

    上海重點中學

    廣州重點中學

    深圳重點中學

    天津重點中學

    成都重點中學

    試題資料

    中考壓軸題

    中考模擬題

    各科練習題

    單元測試題

    初中期中試題

    初中期末試題

    中考大事記

    北京中考大事記

    天津中考大事記

    重慶中考大事記

    西安中考大事記

    沈陽中考大事記

    濟南中考大事記

    知識點

    初中數學知識點

    初中物理知識點

    初中化學知識點

    初中英語知識點

    初中語文知識點

    中考滿分作文

    初中資源

    初中語文

    初中數學

    初中英語

    初中物理

    初中化學

    中學百科

    精品人妻无码AⅤ一区二区_亚洲国产天堂一区二区在线观看_欧美日韩国产VA在线观看免费_综合 欧美 亚洲日本
    <output id="nljzv"></output>
    <i id="nljzv"></i>
    <ruby id="nljzv"><meter id="nljzv"><acronym id="nljzv"></acronym></meter></ruby>
    <wbr id="nljzv"><table id="nljzv"><p id="nljzv"></p></table></wbr>
  • <sub id="nljzv"><tr id="nljzv"></tr></sub>

    <sub id="nljzv"><pre id="nljzv"></pre></sub>

      <wbr id="nljzv"><table id="nljzv"></table></wbr>

    <source id="nljzv"></source>
  • <acronym id="nljzv"><bdo id="nljzv"></bdo></acronym>
    <i id="nljzv"><bdo id="nljzv"></bdo></i>

  • 久久精品国产首页国产 | 五月天在线无套AV | 色婷婷亚洲婷婷7月 | 一本到国产在线精品国内 | 丝袜美腿精品国产一区 | 日本视频高清一区二区三区 |