來源:網絡資源 作者:中考網整理 2019-05-01 18:49:33
辛苦的一年,會苦盡甘來。教育小編為初三學生整理了初三數學期中考試解題方法總結內容,以供大家參考。
數學考試解題方法總結
1.配方法所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和 、求 的極值和解析式等方面都經常用到它。
2.因式分解法因式分解,就是把一個多項式化成幾個整式乘積的形式。
因式分解是恒等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3.換元法換元法是初中數學中一個非常重要而且應用十分廣泛的解題方法。
我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4.判別式法與韋達定理 ax2bxc=0(a、b、c屬于R,a=?0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在 變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱 ,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5.待定系數法在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
歡迎使用手機、平板等移動設備訪問中考網,2023中考一路陪伴同行!>>點擊查看