來源:網絡資源 作者:中考網整理 2019-04-23 17:28:23
一次函數的定義
不少 生對 知識點了解不是十分透徹,下面是教育中考頻道小編為中考生整理有關 考試知識點分析:二次函數的內容,供你學習參考! 一次函數,也作線性函數,在x,y坐標軸中可以用一條直線表示,當一次函數中的一個變量的值確定時,可以用一元一次方程確定另一個變量的值。 函數的表示方法 列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數之間的對應規律。 解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。 圖象法:形象直觀,但只能近似地表達兩個變量之間的函數關系。 一般地,形如y=kx+b(k,b是常數,且k=?0),那么y叫做x的一次函數,當b=0時,y=kx+b即y=kx,所以說正比例函數是一種特殊的一次函數 注:一次函數一般形式y=kx+b(k不為0) a).k不為0 b).x的指數是1 c).b取任意實數 一次函數y=kx+b的圖像是經過(0,b)和(-b/k,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看做直線y=kx平移|b|個單位長度得到。(當b>0時,向上平移;b<0時,向下平移)具體如下: 每一門功課都有它自身的規律,有它自身的特點,數學當然也不例外。下面是有關中考數學考試知識點分析:一次函數的內容,供你學習參考! 正比例函數和一次函數 每一門功課都有它自身的規律,有它自身的特點,數學當然也不例外。下面是有關中考數學考試知識點分析:一次函數的內容,供你學習參考! (1)關系式為整式時,函數定義域為全體實數; (2)關系式含有分式時,分式的分母不等于零; (3)關系式含有二次根式時,被開放方數大于等于零; (4)關系式中含有指數為零的式子時,底數不等于零; (5)實際問題中,函數定義域還要和實際情況相符合,使之有意義。 用待定系數法確定函數解析式的一般步驟 (1)根據已知條件寫出含有待定系數的函數關系式; (2)將x、y的幾對值或圖像上的幾個點的坐標代入上述函數關系式中得到以待定系數為未知數的方程 (3)解方程得出未知系數的值; (4)將求出的待定系數代回所求的函數關系式中得出所求函數的解析式。 以上“初三(九年級)數學復習知識點:一次函數”的全部內容是由教育中考頻道整理的,更多的有關初三(九年級)數學復習知識點的內容請查看教育網中考頻道。
歡迎使用手機、平板等移動設備訪問中考網,2023中考一路陪伴同行!>>點擊查看