<output id="nljzv"></output>
<i id="nljzv"></i>
<ruby id="nljzv"><meter id="nljzv"><acronym id="nljzv"></acronym></meter></ruby>
<wbr id="nljzv"><table id="nljzv"><p id="nljzv"></p></table></wbr>
  • <sub id="nljzv"><tr id="nljzv"></tr></sub>

    <sub id="nljzv"><pre id="nljzv"></pre></sub>

      <wbr id="nljzv"><table id="nljzv"></table></wbr>

    <source id="nljzv"></source>
  • <acronym id="nljzv"><bdo id="nljzv"></bdo></acronym>
    <i id="nljzv"><bdo id="nljzv"></bdo></i>

  • 中考網
    全國站
    快捷導航 中考政策指南 2024熱門中考資訊 中考成績查詢 歷年中考分數線 中考志愿填報 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁
    您現在的位置:中考 > 初中數學 > 三角函數 > 三角函數定義 > 正文

    2021初中七年級數學知識點:三角函數公式關系

    來源:網絡來源 作者:中考網編輯 2020-12-30 11:58:25

    中考真題

    智能內容

      中考網整理了關于2021初中七年級數學知識點:三角函數公式關系,希望對同學們有所幫助,僅供參考。

      倒數關系

      tanα ·cotα=1

      sinα ·cscα=1

      cosα ·secα=1

      商的關系

      sinα/cosα=tanα=secα/cscα

      cosα/sinα=cotα=cscα/secα

      平方關系

      sin^2(α)+cos^2(α)=1

      1+tan^2(α)=sec^2(α)

      1+cot^2(α)=csc^2(α)

      同角三角函數關系六角形記憶法

      構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

      倒數關系

      對角線上兩個函數互為倒數;

      商數關系

      六邊形任意一頂點上的函數值等于與它相鄰的兩個頂點上函數值的乘積。(主要是兩條虛線兩端的三角函數值的乘積,下面4個也存在這種關系。)。由此,可得商數關系式。

      平方關系

      在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等于下面頂點上的三角函數值的平方。

      兩角和差公式

      sin(α+β)=sinαcosβ+cosαsinβ

      sin(α-β)=sinαcosβ-cosαsinβ

      cos(α+β)=cosαcosβ-sinαsinβ

      cos(α-β)=cosαcosβ+sinαsinβ

      tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)

      tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)

      二倍角的正弦、余弦和正切公式

      sin2α=2sinαcosα

      cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

      tan2α=2tanα/(1-tan^2(α))

      tan(1/2*α)=(sin α)/(1+cos α)=(1-cos α)/sin α

      半角的正弦、余弦和正切公式

      sin^2(α/2)=(1-cosα)/2

      cos^2(α/2)=(1+cosα)/2

      tan^2(α/2)=(1-cosα)/(1+cosα)

      tan(α/2)=(1—cosα)/sinα=sinα/1+cosα

      萬能公式

      sinα=2tan(α/2)/(1+tan^2(α/2))

      cosα=(1-tan^2(α/2))/(1+tan^2(α/2))

      tanα=(2tan(α/2))/(1-tan^2(α/2))

      三倍角的正弦、余弦和正切公式

      sin3α=3sinα-4sin^3(α)

      cos3α=4cos^3(α)-3cosα

      tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

      三角函數的和差化積公式

      sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2)

      sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2)

      cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)

      cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)

      三角函數的積化和差公式

      sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

      cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

      cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

      sinα·sinβ=- 0.5[cos(α+β)-cos(α-β)]

      相關推薦:

      2021年全國各省市中考報名時間匯總

      2021年全國各地中考體育考試方案匯總

      2021年全國各省市中考時間匯總

     

    關注中考網微信公眾號 

    每日推送中考知識點,應試技巧

    助你迎接2021年中考!

       歡迎使用手機、平板等移動設備訪問中考網,2024中考一路陪伴同行!>>點擊查看

    • 歡迎掃描二維碼
      關注中考網微信
      ID:zhongkao_com

    • 歡迎掃描二維碼
      關注高考網微信
      ID:www_gaokao_com

    • 歡迎微信掃碼
      關注初三學習社
      中考網官方服務號

    熱點專題

    • 2024年全國各省市中考作文題目匯總
    • 2024中考真題答案專題
    • 2024中考查分時間專題

    [2024中考]2024中考分數線專題

    [2024中考]2024中考逐夢前行 未來可期!

    中考報考

    中考報名時間

    中考查分時間

    中考志愿填報

    各省分數線

    中考體育考試

    中考中招考試

    中考備考

    中考答題技巧

    中考考前心理

    中考考前飲食

    中考家長必讀

    中考提分策略

    重點高中

    北京重點中學

    上海重點中學

    廣州重點中學

    深圳重點中學

    天津重點中學

    成都重點中學

    試題資料

    中考壓軸題

    中考模擬題

    各科練習題

    單元測試題

    初中期中試題

    初中期末試題

    中考大事記

    北京中考大事記

    天津中考大事記

    重慶中考大事記

    西安中考大事記

    沈陽中考大事記

    濟南中考大事記

    知識點

    初中數學知識點

    初中物理知識點

    初中化學知識點

    初中英語知識點

    初中語文知識點

    中考滿分作文

    初中資源

    初中語文

    初中數學

    初中英語

    初中物理

    初中化學

    中學百科

    精品人妻无码AⅤ一区二区_亚洲国产天堂一区二区在线观看_欧美日韩国产VA在线观看免费_综合 欧美 亚洲日本
    <output id="nljzv"></output>
    <i id="nljzv"></i>
    <ruby id="nljzv"><meter id="nljzv"><acronym id="nljzv"></acronym></meter></ruby>
    <wbr id="nljzv"><table id="nljzv"><p id="nljzv"></p></table></wbr>
  • <sub id="nljzv"><tr id="nljzv"></tr></sub>

    <sub id="nljzv"><pre id="nljzv"></pre></sub>

      <wbr id="nljzv"><table id="nljzv"></table></wbr>

    <source id="nljzv"></source>
  • <acronym id="nljzv"><bdo id="nljzv"></bdo></acronym>
    <i id="nljzv"><bdo id="nljzv"></bdo></i>

  • 婷婷六月综合缴 | 午夜国产人成视频 | 这里只有精品国产亚洲 | 亚洲国产精品精品在线第1页 | 亚洲成色最大综合在线播放6 | 日韩精品欧美激情一区二区 |