來源:網絡資源 作者:中考網編輯 2021-05-14 21:36:47
中考網整理了關于2021年中考數學知識點之:完全平方公式,希望對同學們有所幫助,僅供參考。
完全平方公式
教學目標
1.知識與技能
會推導完全平方公式,并能運用公式進行簡單的運算,形成推理能力.
2.過程與方法
利用多項式與多項式的乘法以及冪的意義,推導出完全平方公式.掌握完全平方公式的計算方法.
3.情感、態度與價值觀
培養學生觀察、類比、發現的能力,體驗數學活動充滿著探索性和創造性.
重、難點與關鍵
1.重點:完全平方公式的推導和應用.
2.難點:完全平方公式的應用.
3.關鍵:從多項式與多項式相乘入手,推導出完全平方公式,利用幾何模和割補面積的方法來驗證公式的正確性.
教具準備
制作邊長為a和b的正方形以及長為a寬為b的紙板.
教學方法
采用“情境──探究”教學方法,讓學生在所創設的情境中領會完全平方公式的內涵.
教學過程
一、創設情境,導入新知
【激趣輔墊】
寓言故事:請一位學生講一講《濫竽充數》的寓言故事.
【學生活動】由一位學生上講臺講《濫竽充數》的寓言故事,其他學生補充.
【教師活動】提出:你們從故事中學到了什么道理?(寓德于教)【學生發言】比喻沒有真才實學的人,混在行家里充數,或以次貨充好貨.
【教師引導】對!所以我們在以后的學習和工作中,千萬別濫竽充數,一定要有真才實學.好.今天同學們喊得很響亮,我要看看有沒有南郭先生,請同學們完成下面的幾道題:
(1)(2x-3)2; (2)(x+y)2; (3)(m+2n)2; (4)(2x-4)2.
【學生活動】先獨立完成以上練習,再爭取上講臺演練,
(1)(2x-3)2=4x2-12x+9; (2)(x+y)2=x2+2xy+y2;
(3)(m+2n)2=m2+4mn+4n2; (4)(2x-4)2=4x2-16x+16.
【教師活動】組織學生通過上面的運算結果中的每一項,觀察、猜測它們的共同特點.
【學生活動】分四人小組,討論.觀察,探討,發現規律如下:(1)右邊第一項是左邊第一項的平方,右邊最后一項是左邊第二項的平方,中間一項是它們兩個乘積的2倍.(2)左邊如果為“+”號,右邊全是“+”號,左邊如果為“-”號,它們兩個乘積的2倍就為“-”號,其余都為“+”號.
【教師提問】那我們就利用簡單的(a+b)2與(a-b)2進行驗證,請同學們利用多項式乘法以及冪的意義進行計算. 【學生活動】計算出(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2,完成后,一位學生上講臺板演.
【教師活動】利用學生的板演內容,引出本節課的教學內容──完全平方公式.
歸納:完全平方公式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
語言敘述:兩數和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍.
為了讓學生直觀理解公式,可做下面的拼圖游戲.
【拼圖游戲】
解釋:(1)現有圖1所示的三種規格的硬紙片各若干張,請你根據二次三項式a2+2ab+b2,選取相應種類和數量的硬紙片,拼出一個正方形,并探究所拼出的正方形的代數意義.
(2)你能根據圖2,談一談(a-b)2=a2-2ab+b2嗎?
【課堂活動】第(1)題由小組合作,在互動中完成拼圖游戲,比一比,哪個四人小組快?第(2)題,可以借助多媒體課件,直觀地演示面積的變化,幫助學生聯想到
(a-b)2=a2-b2-2b(a-b)=a2-2ab+b2.
二、范例學習,應用所學
【例1】運用完全平方公式計算:
(1)(-x-y)2; (2)(2y-)2
(1)解法一:(-x-y)2=[(-x)+(-y)] 2
=(-x)2+2(-x)(-y)+(-y)2
=x2+2xy+y2;
解法二:(-x-y)2=[-(x+y)] 2=(x+y)2=x2+2xy+y2.
(2)解法一:(2y-)2=(2y)2-2·2y·+()2
=4y2-y+.
解法二:(2y-)2=[2y+(-)] 2
=(2y)2+2·2y·(-)+(-)2
=4y2-y+.
【例2】運用乘法公式計算99992.
解:99992=(104-1)2=108-2×104+1
=100000000-20000+1
=99980001.三、隨堂練習,鞏固新知
【基礎訓練】
(1)(-)2; (2)(2xy+3)2;
(3)(-ab+)2; (4)(7ab+2)2.
【拓展訓練】
(1)(-2x-3)2; (2)(2x+3)2;
(3)(2x-3)2; (4)(3-2x)2.
【教師活動】在學生完成“拓展訓練”之后,讓學生觀察一下結果,看看有什么規律.
【學生活動】分四人小組合作交流,尋找規律如下:把以上所有的題目都看作兩個數的和的完全平方(把減去一個數看作加上一個負數),如果兩個數是相同的符號,則結果中的每一項都是正的,如果兩個數具有不同的符號,則它們乘積的2倍這一項就是負的.
【探研時空】
已知:x+y=-2,xy=3,求x2+y2.
四、課堂總結,發展潛能
本節課學習了(a±b)2=a2±2ab+b2,兩個乘法公式,在應用時,(1)要了解公式的結構和特征.讓住每一個公式左右兩邊的形式特征,記準指數和系數的符號;(2)掌握公式的幾何意義;(3)弄清公式的變化形式;(4)注意公式在應用中的條件;(5)應靈活地應用公式來解題.
五、布置作業,專題突破
課本P156習題15.2第3、4、8、9題.
板書設計
15.2.2 完全平方公式(一) 1、完全平方公式 例: (a±b)2=a2±2ab+b2
相關推薦:
2021年全國各省市中考報名時間匯總
2021年全國各地中考體育考試方案匯總
2021年全國各省市中考時間匯總
關注中考網微信公眾號
每日推送中考知識點,應試技巧
助你迎接2021年中考!
歡迎使用手機、平板等移動設備訪問中考網,2024中考一路陪伴同行!>>點擊查看