來源:網絡資源 2022-11-21 16:15:29
考點一、線段垂直平分線,角的平分線,垂線
1、線段垂直平分線的性質定理及逆定理
垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線。
線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等。逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
2、角的平分線及其性質
一條射線把一個角分成兩個相等的角,這條射線叫做這個角的平分線。角的平分線有下面的性質定理:
(1)角平分線上的點到這個角的兩邊的距離相等。
(2)到一個角的兩邊距離相等的點在這個角的平分線上。
3、垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。2、三角形中的主要線段
(1)三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點間的線段叫做三角形的角平分線。
(2)在三角形中,連接一個頂點和它對邊的中點的線段叫做三角形的中線。
(3)從三角形一個頂點向它的對邊做垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。
4、三角形的穩定性
三角形的形狀是固定的,三角形的這個性質叫做三角形的穩定性。三角形的這個性質在生產生活中應用很廣,需要穩定的東西一般都制成三角形的形狀。6、三角形的三邊關系定理及推論
(1)三角形三邊關系定理:三角形的兩邊之和大于第三邊。推論:三角形的兩邊之差小于第三邊。
(2)三角形三邊關系定理及推論的作用:
①判斷三條已知線段能否組成三角形②當已知兩邊時,可確定第三邊的范圍。③證明線段不等關系。7、三角形的角關系
三角形的內角和定理:三角形三個內角和等于180°。推論:
①直角三角形的兩個銳角互余。
②三角形的一個外角等于和它不相鄰的來兩個內角的和。③三角形的一個外角大于任何一個和它不相鄰的內角。
注:在同一個三角形中:等角對等邊;等邊對等角;大角對大邊;大邊對大角。等角的補角相等,等角的余角相等。
考點二、全等三角形
1、全等三角形的概念
能夠完全重合的兩個三角形叫做全等三角形。
能夠完全重合的兩個三角形叫做全等三角形。兩個三角形全等時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。夾邊就是三角形中相鄰兩角的公共邊,夾角就是三角形中有公共端點的兩邊所成的角。
2、三角形全等的判定三角形全等的判定定理:
直角三角形全等的判定:
對于特殊的直角三角形,判定它們全等時,還有HL定理(斜邊、直角邊定理):有斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成“斜邊、直角邊”或“HL”)
考點三、等腰三角形
1、等腰三角形的性質
(1)等腰三角形的性質定理及推論:
定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)
推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。
推論2:等邊三角形的各個角都相等,并且每個角都等于60°。(2)等腰三角形的其他性質:
①等腰直角三角形的兩個底角相等且等于45°
②等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。
2、等腰三角形的判定
等腰三角形的判定定理及推論:
定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。這個判定定理常用于證明同一個三角形中的邊相等。
推論1:三個角都相等的三角形是等邊三角形
推論2:有一個角是60°的等腰三角形是等邊三角形。
推論3:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半。
3、直角三角形
(1)定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。
(2)依據:
①邊的關系:初中數學復習提綱
②角的關系:A+B=90°
③邊角關系:三角函數的定義。
注意:盡量避免使用中間數據和除法。
歡迎使用手機、平板等移動設備訪問中考網,2025中考一路陪伴同行!>>點擊查看
B闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐閸愯弓缃曟繝寰锋澘鈧洟骞婃惔銏╂敯闂傚倷鑳剁划顖炲礉閺囥垹绠规い鎰╁€栭崰鍡涙煥閺囩偛鈧綊鎮¢妷鈺傜厽闁哄洨鍋涢埀顒€婀遍埀顒佺啲閹凤拷
C闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸婂潡鏌ㄩ弴姘舵濞存粌缍婇弻娑㈠箛閸忓摜鏁栭梺娲诲幗閹瑰洭骞冨Δ鍛瀭妞ゆ劑鍊栭幉娆愮節濞堝灝鏋熷┑鐐诧躬瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f礀缁犵娀鏌熼崜褏甯涢柛瀣ㄥ€濋弻鏇熺箾閻愵剚鐝旂紓浣插亾濠㈣泛顑囩粻楣冩煕閳╁叐鎴犱焊椤撶姷纾奸柍褜鍓熷畷鎺楁倷鐎电ǹ寮抽梻浣虹帛濞叉牠宕愰崷顓涘亾濮樼偓瀚�闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i姀鈶跺湱澹曟繝姘厵闁告挆鍛闂佺粯鎸婚悷褏妲愰幒鏂哄亾閿濆骸浜滄い鏇熺矒閺岀喖鎯傞崫銉滈梺鍝勭焿缂嶄線鐛▎鎾崇妞ゆ巻鍋撴い蹇ユ嫹闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i姀鈶跺湱澹曟繝姘厵闁告挆鍛闂佺粯鎸婚悷褏妲愰幒鏂哄亾閿濆簼绨藉ù鐘灪閵囧嫰骞掔€n亞浼勯梺璇″櫘閸o綁寮幘缁樻櫢闁跨噦鎷�
D濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倻鎲搁悧鍫濈瑲闁稿顦甸弻鏇$疀鐎n亖鍋撻弴銏㈠祦闁靛骏绱曠粻楣冩煕閳╁厾顏堟倿妤e啯鐓曢柣鏇炲€圭€氾拷
F缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕閻庤娲橀崝娆忕暦椤愶箑唯闁挎洍鍋撻幖鏉戯躬濮婇缚銇愰幒鎴滃枈闂佸摜濮靛畝鎼佸箖閾忣偆绡€婵﹩鍘鹃崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷
G婵犵數濮撮惀澶愬级鎼存挸浜炬俊銈勭劍閸欏繘鏌i幋锝嗩棄缁惧墽绮换娑㈠箣濞嗗繒浠鹃梺绋匡龚閸╂牜鎹㈠┑瀣棃婵炴垶鑹鹃埅閬嶆⒑缂佹ḿ鐭婃い顓犲厴瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷
H闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇氱秴闁搞儯鍔庨々鐑芥倵閿濆簼绨婚柛瀣Ч濮婃椽宕楅懖鈹垮仦闂佸搫鎳忕换鍫ュ箖閾忣偆绡€婵﹩鍘鹃崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐閸愬弶鐤勫┑掳鍊х徊浠嬪疮椤栫偛纾婚悗锝庡枟閻撴瑩鏌eΔ鈧悧濠勬閼碱剛妫柟顖嗗瞼鍚嬮梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�
J婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒€鏂€缂傚倹纰嶇换娑㈠幢濡搫袝濠电偛鐗忛弲顐ゆ閹烘柡鍋撻敐搴″箺缁绢厼鐖奸弻锟犲幢椤撶姷鏆ら梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�
N闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐椤旂懓浜鹃柛鎰靛枛楠炪垺绻涢幋鐑嗙劯闁挎洖鍊归悡鐔兼煙闁箑澧柟顖氱墦閹嘲鈻庡▎鎴犳殼闂佸搫琚崝鎴﹀箖閵堝纾兼繛鎴烇供娴硷拷闂傚倸鍊搁崐宄懊归崶顒夋晪鐟滄棃寮绘繝鍥ㄦ櫜濠㈣泛锕﹂崝锕€顪冮妶鍡楃瑐闁煎啿鐖兼俊鎾箳濡や胶鍘遍梺鍝勫€藉▔鏇熸櫏闂備浇顕栭崰妤佺仚缂備胶濮甸惄顖涗繆閻戣姤鏅濋柍褜鍓熼、鏃堟晸閿燂拷
Q闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵稿妽闁稿顑呴埞鎴︽偐閹绘帩浠鹃梺鍝勬缁捇寮婚悢鍏煎€绘慨妤€妫欓悾鐑芥⒑缁嬪灝顒㈡い銊ワ躬瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷
S濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姳鍗抽弻鐔兼⒒鐎电ǹ濡介梺鍝勬噺缁诲牓寮婚弴鐔风窞闁糕剝蓱閻濇梻绱撴担鍝勑i柣鎿勭節瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧潡鏌熺€电ǹ孝缂佽翰鍊濋弻锕€螣娓氼垱楔闂佸搫妫撮梽鍕Φ閸曨垰绠抽柛鈩冦仦婢规洟姊绘担鐟邦嚋婵炴彃绻樺畷瑙勭鐎n亝鐎梺鐟板⒔缁垶寮查幖浣圭叆闁绘洖鍊圭€氾拷闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊閵娧呭骄闂佸壊鍋侀崕娲极鐎n剚鍠愰煫鍥ㄧ☉缁犳煡鏌曡箛瀣偓鏇犵不濞戞瑣浜滈柡鍌氱仢閳锋梹顨ラ悙瀛樺磳婵﹨娅i幑鍕Ω閵夛妇褰氶梻浣烘嚀閸ゆ牠骞忛敓锟�婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾剧粯绻涢幋娆忕仾闁搞倖鍔栭妵鍕冀椤愵澀娌梺绋款儏椤戝寮婚悢鍏煎€锋い鎺戝€婚悰顕€姊洪幐搴g畵妞わ缚鍗冲鏌ュ箹娴e湱鍙嗛梺缁樻礀閸婂湱鈧熬鎷�闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇楀亾妞ゎ亜鍟村畷绋课旈埀顒勫磼閵娿儮鏀介柛灞剧氨瑜版帗鍋い鏇楀亾闁哄本绋栭ˇ铏亜閵娿儳绠荤€殿噮鍋呯换婵嬪礋閵娿儰澹曞Δ鐘靛仜閻忔繈宕濆顓濈箚妞ゆ劧绲块幊鍥┾偓瑙勬礃濞茬喖骞冮姀銈呯闁兼祴鏅涘鎶芥⒒娴h櫣甯涙繛鍙夌墵瀹曟劙宕烽娑樹壕婵ḿ鍋撶€氾拷
T濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倻鎲搁悧鍫濈瑲闁稿﹤鐖奸弻娑㈩敃閻樻彃濮庨梺姹囧€楅崑鎾舵崲濠靛洨绡€闁稿本绋戝▍銈夋⒑閸濄儱孝婵☆偅绻堝濠氬Ω閳哄倸浜為梺绋挎湰缁嬫垿顢旈敓锟�濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倸霉閻樿尙鎲柣鎴f绾惧吋绻涢幋鐐插毈婵炶尙枪閳规垿鎮╃拠褍浼愰梺鐟板暱缁绘ê顕i崘娴嬪牚闁割偆鍠撻崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷
W婵犵數濮烽弫鍛婃叏閻㈠壊鏁婇柡宥庡幖缁愭淇婇妶鍛殲鐎规洘鐓¢弻鐔煎箥椤旂⒈鏆梺鎶芥敱濡啴寮诲☉銏犲嵆闁靛ǹ鍎虫禒顓㈡⒑缁嬪灝顒㈤柛銊ユ健瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晝閳ь剟鎮块鈧弻锝呂旈埀顒勬偋韫囨洜涓嶅Δ锝呭暞閻撳啰鎲稿⿰鍫濈闁绘梻鍘ч拑鐔兼煃閳轰礁鏆熼柣鐔烘嚀閳规垿鎮╅幓鎺撴濡炪倕楠忛幏锟�
X闂傚倸鍊搁崐宄懊归崶褏鏆﹂柣銏⑶圭粣妤呮煙閹峰苯鐒介柍褜鍓欓崯鏉戠暦閵娧€鍋撳☉娅亪鍩€椤掑啫鐓愮紒缁樼箞濡啫鈽夐崡鐐插闂備胶枪椤戝倿寮查悩璇茶摕闁靛ň鏅滈崑鍡涙煕鐏炲墽鈽夋い蹇ユ嫹
Z闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣椤愪粙鏌ㄩ悢鍝勑㈢紒鎰殕娣囧﹪濡堕崨顔兼闂佹悶鍔岄崐鍧楀蓟閿濆顫呴柕蹇婂墲濮e嫰姊虹紒妯肩煀妞ゎ厾鍏樺濠氬Ω閳哄倸浜為梺绋挎湰缁嬫垿顢旈敓锟�