<output id="nljzv"></output>
<i id="nljzv"></i>
<ruby id="nljzv"><meter id="nljzv"><acronym id="nljzv"></acronym></meter></ruby>
<wbr id="nljzv"><table id="nljzv"><p id="nljzv"></p></table></wbr>
  • <sub id="nljzv"><tr id="nljzv"></tr></sub>

    <sub id="nljzv"><pre id="nljzv"></pre></sub>

      <wbr id="nljzv"><table id="nljzv"></table></wbr>

    <source id="nljzv"></source>
  • <acronym id="nljzv"><bdo id="nljzv"></bdo></acronym>
    <i id="nljzv"><bdo id="nljzv"></bdo></i>

  • 中考網
    全國站
    快捷導航 中考政策指南 2024熱門中考資訊 中考成績查詢 歷年中考分數線 中考志愿填報 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁
    您現在的位置:中考 > 知識點庫 > 初中數學知識點 > 分式 > 正文

    2023年初二數學上冊分式方程性質+解題方法整理

    來源:網絡資源 2023-01-03 11:23:22

    中考真題

    智能內容

    一、分式方程的概念

    分母中含有未知數的方程叫分式方程.

    要點詮釋:

    (1)分式方程的重要特征:

    ①是等式;

    ②方程里含有分母;

    ③分母中含有未知數.

    (2)分式方程和整式方程的區別就在于分母中是否有未知數(不是一般的字母系數).分母中含有未知數的方程是分式方程,分母中不含有未知數的方程是整式方程.

    (3)分式方程和整式方程的聯系:分式方程可以轉化為整式方程.

    二、分式方程的解法

    解分式方程的基本思想:將分式方程轉化為整式方程,轉化方法是方程兩邊都乘以最簡公分母,去掉分母。在去分母這一步變形時,有時可能產生使最簡公分母為零的根,這種根叫做原方程的增根。因為解分式方程時可能產生增根,所以解分式方程時必須驗根。

    三、解分式方程的一般步驟:

    (1)方程兩邊都乘以最簡公分母,去掉分母,化成整式方程(注意:當分母是多項式時,先分解因式,再找出最簡公分母);

    (2)解這個整式方程,求出整式方程的解;

    (3)檢驗:將求得的解代入最簡公分母,若最簡公分母不等于0,則這個解是原分式方程的解,若最簡公分母等于0,則這個解不是原分式方程的解,原分式方程無解.

    知識點一

    分式的基本性質:分式的分子和分母乘(或除以)同一個不等于0的整式,分式的值不變。

    典例

    變式練習

    點評:利用分式的性質進行化簡時必須注意所乘的(或所除的)整式不為零。

    知識點二

    分式方程定義:分母中含未知數的方程叫做分式方程。

    整根:使最簡公分母為0的根叫做分式方程的整根。

    檢驗分式方程解的方法:將整式方程的解代入最簡公分母,如果最簡公分母的值不為0,則整式方程的解釋原分式方程的解;否則,這個解不是原分式方程的解。

    分式方程的解的步驟:(1)去分母,把方程兩邊同乘以各分母的最簡公分母。(產生增根的過程)

    (2)解整式方程,得到整式方程的解。

    (3)檢驗,把所得的整式方程的解代入最簡公分母中:

    如果最簡公分母為0,則原方程無解,這個未知數的值是原方程的增根;如果最簡公分母不為0,則是原方程的解。

    典例

    變式練習

    點評:本題考查了分式方程的增根,增根問題可按如下步驟進行:

    ①讓最簡公分母為0確定增根;

    ②化分式方程為整式方程;

    ③把增根代入整式方程即可求得相關字母的值。

    易錯點

    1、分式值為0時,忽略分母不為0的條件

    2、解分式方程,去分母時漏乘整式項導致出錯。

       歡迎使用手機、平板等移動設備訪問中考網,2023中考一路陪伴同行!>>點擊查看

    • 歡迎掃描二維碼
      關注中考網微信
      ID:zhongkao_com

    • 歡迎掃描二維碼
      關注高考網微信
      ID:www_gaokao_com

    • 歡迎微信掃碼
      關注初三學習社
      中考網官方服務號

    熱點專題

    • 2024年全國各省市中考作文題目匯總
    • 2024中考真題答案專題
    • 2024中考查分時間專題

    [2024中考]2024中考分數線專題

    [2024中考]2024中考逐夢前行 未來可期!

    中考報考

    中考報名時間

    中考查分時間

    中考志愿填報

    各省分數線

    中考體育考試

    中考中招考試

    中考備考

    中考答題技巧

    中考考前心理

    中考考前飲食

    中考家長必讀

    中考提分策略

    重點高中

    北京重點中學

    上海重點中學

    廣州重點中學

    深圳重點中學

    天津重點中學

    成都重點中學

    試題資料

    中考壓軸題

    中考模擬題

    各科練習題

    單元測試題

    初中期中試題

    初中期末試題

    中考大事記

    北京中考大事記

    天津中考大事記

    重慶中考大事記

    西安中考大事記

    沈陽中考大事記

    濟南中考大事記

    知識點

    初中數學知識點

    初中物理知識點

    初中化學知識點

    初中英語知識點

    初中語文知識點

    中考滿分作文

    初中資源

    初中語文

    初中數學

    初中英語

    初中物理

    初中化學

    中學百科

    精品人妻无码AⅤ一区二区_亚洲国产天堂一区二区在线观看_欧美日韩国产VA在线观看免费_综合 欧美 亚洲日本
    <output id="nljzv"></output>
    <i id="nljzv"></i>
    <ruby id="nljzv"><meter id="nljzv"><acronym id="nljzv"></acronym></meter></ruby>
    <wbr id="nljzv"><table id="nljzv"><p id="nljzv"></p></table></wbr>
  • <sub id="nljzv"><tr id="nljzv"></tr></sub>

    <sub id="nljzv"><pre id="nljzv"></pre></sub>

      <wbr id="nljzv"><table id="nljzv"></table></wbr>

    <source id="nljzv"></source>
  • <acronym id="nljzv"><bdo id="nljzv"></bdo></acronym>
    <i id="nljzv"><bdo id="nljzv"></bdo></i>

  • 最新精品国产免费 | 亚洲午夜久久久影院 | 亚洲国产一级在线 | 在线观看日本免费a∨下 | 午夜福利三级视频 | 亚州Av片在线劲爆看 |