來源:網絡資源 2023-02-02 21:10:09
知識點總結
一.二元一次方程(組)的相關概念
1.二元一次方程:含有兩個未知數并且未知項的次數是1的方程叫做二元一次方程。
2.二元一次方程組:二元一次方程組兩個二元—次方程合在一起就組成了一個二元一次方程組。
3.二元一次方程的解集:
(1)二元一次方程的解
適合一個二元一次方程的每一對未知數的值.叫做這個二元一次方程的一個解。
(2)二元一次方程的解集
對于任何一個二元一次方程,令其中一個未知數取任意二個值,都能求出與它對應的另一個未知數的值.因此,任何一個二元一次方程都有無數多個解.由這些解組成的集合,叫做這個二元一次方程的解集。
4.二元一次方程組的解:二元一次方程組可化為
使方程組中的各個方程的左、右兩邊都相等的未知數的值,叫做方程組的解。
二.利用消元法解二元一次方程組
解二元(三元)一次方程組的一般方法是代入消元法和加減消元法。
1.解法:
(1) 代入消元法是將方程組中的其中一個方程的未知數用含有另一個未知數的代數式表示,并代入到另一個方程中去,消去另一個未知數,得到一個解。代入消元法簡稱代入法。
(2)加減消元法利用等式的性質使方程組中兩個方程中的某一個未知數前的系數的絕對值相等,然后把兩個方程相加或相減,以消去這個未知數,使方程只含有一個未知數而得以求解。這種解二元一次方程組的方法叫做加減消元法,簡稱加減法。
用加減法消元的一般步驟為:
①在二元一次方程組中,若有同一個未知數的系數相同(或互為相反數),則可直接相減(或相加),消去一個未知數;
②在二元一次方程組中,若不存在①中的情況,可選擇一個適當的數去乘方程的兩邊,使其中一個未知數的系數相同(或互為相反數),再把方程兩邊分別相減(或相加),消去一個未知數,得到一元一次方程;
③解這個一元一次方程;
④將求出的一元一次方程的解代入原方程組系數比較簡單的方程,求另一個未知數的值;
⑤把求得的兩個未知數的值用大括號聯立起來,這就是二元一次方程組的解。
2.思想:“消元”,即將“二元”轉化成“一元”,這種方法體現了數學研究中的化歸思想,具體說就是把“新知識”轉化成舊知識,把“未知”轉化成“已知”,把“復雜問題”轉化成“簡單問題”。
三.二元一次方程的整數解問題
由于二元一次方程的解不唯一性(無數多個),在實際生活中又有較多的例子可以求出二元一次方程的整數解。
四.二元一次方程組的檢驗法
常用的方法是:將這對數值分別代入方程組中的每個方程,只有當這對數值滿足其中的所有方程時,才能說這對數值是此方程的解;如果這對數值不滿足任何一個方程,那么它就不是方程組的解。
五.三元一次方程組及其解法
三元一次方程組在課程中沒有提到,但在中考中,部分省、市命題仍有考題,競賽中也常用到它的解法,這里作個補充。
1.方程組有三個未知數,每個方程的未知項的次數都是1,并且一共有三個方程,像這樣的方程組叫三元一次方程組。
2.解三元一次方程組的方法與解二元一次方程組類似,只是多用一次消元法,它的基本思路是:
3.解三元一次方程組的一般步驟如下:
(1)把方程組里的一個方程分別與另外兩個方程組成兩組,用代入法或加減法消去這兩組中的同一個未知數,得到一個含有另外兩個未知數的二元一次方程組;
(2)解這個二元一次方程組;
(3)將所求得的兩個未知數的值代入原方程組中的任意一個方程中,求得第三個未知數的解,從而求出了方程的解。
注意:(1)要根據方程組的特點決定首先消去哪個未知數;
(2)原方程組的每個方程在求解過程中至少要用到一次。
常見考法
(1)考查方程的概念及方程的解;
(2)解方程;
(3)應用整數性質求方程的整數解。
誤區提醒
(1)對二元一次方程的概念理解不準確,可能會忽視其中某一個條件;
(2)運用代入消元法時消錯未知數;
(3)進行方程組兩邊相減時,容易漏掉減號“-”,把減數的負號“-”當作減號而出錯。
編輯推薦:
歡迎使用手機、平板等移動設備訪問中考網,2023中考一路陪伴同行!>>點擊查看